Irminger Sea deep convection injects oxygen and anthropogenic carbon to the ocean interior

نویسندگان

  • F. Fröb
  • A. Olsen
  • K. Våge
  • G. W. K. Moore
  • I. Yashayaev
  • E. Jeansson
  • B. Rajasakaren
چکیده

Deep convection in the subpolar North Atlantic ventilates the ocean for atmospheric gases through the formation of deep water masses. Variability in the intensity of deep convection is believed to have caused large variations in North Atlantic anthropogenic carbon storage over the past decades, but observations of the properties during active convection are missing. Here we document the origin, extent and chemical properties of the deepest winter mixed layers directly observed in the Irminger Sea. As a result of the deep convection in winter 2014-2015, driven by large oceanic heat loss, mid-depth oxygen concentrations were replenished and anthropogenic carbon storage rates almost tripled compared with Irminger Sea hydrographic section data in 1997 and 2003. Our observations provide unequivocal evidence that ocean ventilation and anthropogenic carbon uptake take place in the Irminger Sea and that their efficiency can be directly linked to atmospheric forcing.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Surprising return of deep convection to the subpolar North Atlantic Ocean in winter 2007--2008

In the process of open-ocean convection in the subpolar North Atlantic Ocean, surface water sinks to depth as a distinct water mass, the characteristics of which affect the meridional overturning circulation and oceanic heat flux. In addition, carbon is sequestered from the atmosphere in the process. In recent years, this convection has been shallow or non-existent, which could be construed as ...

متن کامل

The ocean takes a deep breath.

Deep convection is the major mechanism for replenishing oxygen in the deep interior of the world ocean, and its variability affects the use of atmospheric oxygen to monitor the global carbon cycle. Sensors mounted on autonomous floats allow this episodic breathing of the ocean to be monitored in near real time. The results suggest that the tools are available now to make oxygen a key parameter ...

متن کامل

The Seasonal and Interannual Variability

The Labrador Sea, as one of a few places of deep water formation, plays an important role in the Meridional Overturning Circulation. While the interior of the Labrador Sea, where the deepest convection takes place, is known to experience variability on time scales ranging from days to decades, little is known about the variability of the other components of the Labrador Sea circulation the boun...

متن کامل

The role of the southern ocean in uptake and storage of anthropogenic carbon dioxide

An ocean-climate model that shows high fluxes of anthropogenic carbon dioxide into the Southern Ocean, but very low storage of anthropogenic carbon there, agrees with observation-based estimates of ocean storage of anthropogenic carbon dioxide. This low simulated storage indicates a subordinate role for deep convection in the present-day Southern Ocean. The primary mechanism transporting anthro...

متن کامل

Using Chemical Tracers to Assess Ocean Models

Chemical tracers can be used to assess the simulated circulation in ocean models. Tracers that have been used in this context include tritium, chlorofluorocarbons, natural and bomb-produced radiocarbon, and to a lesser extent, oxygen, silicate, phosphate, isotopes of organic and inorganic carbon compounds, and certain noble gases (e.g., helium and argon). This paper reviews the use of chemical ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2016